A participatory tool for estimating future impacts on ecosystem services and livelihoods in Torres Strait

JCU: Cass Hunter*, Steve Turton

CSIRO: Tim Skewes, Erin Bohensky, James Butler, Yiheyis Maru

TSRA: Vic McGrath, John Rainbird

Outline

- Context: Torres Strait
- Research objective
- Participatory workshop process
- Scoring of Ecosystems Goods and Services (EGS) and sensitivity of EGS
 - Cumulative potential impact scoring
- Strengths and limitations of the approach
- Adaptation planning, concluding statement

Torres Strait – Indigenous community with strong connection to land and sea

Torres Strait - Community

Unique cultural practices, strong leaders, supporting future generations

Research objective

"To provide the tools for effective planning and adaptation"

Focus/requirements:

- Participatory tool for estimating future impacts on ecosystem services and livelihoods
- Developing a system (holistic) approach
- Social-ecological system
- Work closely with key stakeholders (TSRA)

Session 1:

What are the drivers of change for livelihoods?

Responding to climate and human stressors – participatory tool for understanding impacts

Session 5: What are the priority adaptation strategies to build a resilience?

Participatory Workshop

 Locals, policymakers and researchers Session 2:
What are the
desired and
possible
futures?

Local communities visualising possible futures

Session 4:
What is the resilience of the community today?

Session 3:
What impact
will the
"Business as
Usual" future
have on wellbeing?

Cumulative manipulations of multiple threats upon local EGS

Cumulative manipulations of multiple threats upon local EGS

System Drivers and Pressures

"Business as usual" pressures

Climate (Scenario A2, medium-high emissions)

- Temperature, SST
- Rainfall
- Sea level rise
- Acidification

Climate modelling for Torres Strait:

- Kevin Parnell (JCU)
- Jack Katzfey (CSIRO)
- Suppiah Ramasamy (CSIRO)
- Wayne Rochester (CSIRO)

Human (Population growth - current trajectory)

- Utilisation
- Land use
- Pollution

Ecosystem goods and services

Agricultural

Banana

Betel nut

Cassava

Chickens

Coconut

Garden vegetables

Mangoes

Pawpaw

Pigs (domestic)

Rice

Sago

Sweet potato

Taro

Yams

Freshwater

Finfish (tilapia, snakehead)
Prawn (Macrobrachyia)

Saratoga

Water (fresh and rainwater)

Water (ground)

Estuarine

Barramundi

Barramundi (aquaculture)

Crabs (blue)
Crabs (mud)
Crocodiles

Crocodiles (farmed)

Finfish coastal (trevally, mullet etc)

Mangrove timber

Forest

Birds

Non-timber building material (palms)

Pigs (wild) Rusa deer

Rusa deer (farming)

Timber for building/boats/sale

Wallabies

Reef

Beche-de-mer

Clams (Tridacnid)

Coral lime

Other molluscs (and from mangrove)

Reeffish

Sharks and rays

Tourism (reef)

Trochus

Marine

Dugong

Finfish pelagic (queenfish)

Mackerel

Pearlshell (aquaculture)

Pearlshell (goldlip)

Prawn (banana, tiger)

Rock lobster

Sponge (aquaculture)

Sponge (wild)

Tourism (fishing)

Turtles (flatback)

Turtles (green)

Turtles (hawksbill)

EGS Values to Well-being

Value of each EGS to the four Constituents of Well-being (CoWBe) scored from (0 – 5)

Sensitivity of EGS to stressors

Sensitivity scored on a scale from:

Expert Elicitation

sensitive and/or full adaptation capacity) to the threat

acutely negatively sensitive with no prospect for natural adaptation

acutely positively

Sensitivity: Degree to which an ecosystem asset is affected by or responsive to a driver/stressor.

Accounts for factors such as tolerance thresholds (some marine species have acute thresholds e.g. corals and other species have a broader threshold e.g. crocodiles).

Matrix representation of components

	EGS				
Driver/Stressor	EGS Potential Impact				
/er/S					
Driv					
	Cumulative potential impact				
	EGS Wellbeing Importance (%)				
	Potential well-being impact (%)				Overall well-being impact (%)

EGS Impact (2030) - Masig

Overall potential impact on well-being

Limitations of approach

Subjective process

- Scoring of sensitivity
- Inevitable compromises with the breadth of factors

Uncertainty

- Future projections
- System dynamics

Openly discussed through verbal acknowledgement

Strengths of approach

Transparent

- EGS valuing defined by participants in workshop
- Well-being impact calculated in real-time at workshop

Relevant

- Outputs designed for helping formulate strategies
- "System approach" based on all natural resources used by communities

Replicable

- Methods and assumptions well documented
- Complexity low enough for rapid assessment

Credible

- Scrutiny-potential from peer community of stakeholders
- Outputs that is clear and understood by participants

Co-learning framework

Involvement of locals and policy makers

• Workshops with locals and TSRA

Viewpoints elicited through expert knowledge

• Delphi approach

Valuation of local ecosystem goods and services

Four constituents of well-being (CoWBe)

Iterative decision-making

 Revising ideas/policies as we continue to learn which outcomes are more likely

Engagement to allow for scrutinising

Peer-scrutiny

Knowledge Integration

Scientific Shared Knowledge Stakeholder knowledge **Pre-workshop evaluation** 1. Drivers of change for Torres Socio-economic trends Strait communities and their Perceptions of drivers of change livelihoods? **Downscaled climate projections** 2. Desired and possible futures **Future scenarios and thresholds** for Torres Strait communities? **Ecosystem services model** 3. Impact of business as usual Valuing ecosystems services for future on human well-being? human well-being Livelihood typolopy 4. Adaptive capacity of Torres **Adaptive capacity assessments Strait communities today?** 5. Vulnerabilities of Torres Strait **Ecosystem services impacts Vulnerability assessments** communities? 6. Priority adaption strategies to **Adaptation strategies build resilient Torres Strait Adaptation strategy examples** communities? **Research priorities Post-workshop evaluation**

'No regrets' adaptation strategies

'No regrets' strategies bring benefits under any future conditions of change

Regional workshop

Marine resource conservation

Promote tourism and sponge aquaculture

Climate-change proof terrestrial EGS against sea level rise **Masig community workshop**

Cultural renewal strategy

Build community financial management capacity, including eco-tourism

Improve turtle and dugong management to control over-harvesting

Improve garden food production, including hydroponics

Meetings to improve community communication

More coordination among central islands, which face same issue

Capacity for communities and stakeholders to avoid mal-adaptive strategies

Support the development of TSRA community planning

Workshop Evaluation – Masig Community

Question: "What is the greatest challenge that Masig will face in the future"

Before:

Coastal erosion most frequent (54%)

After:

loss of cultural values most important (37%)

climate change increased to 27%

Question: "Is Masig resilient to future change"

Before:

62% agreed

38% didn't know

After:

91% agreed

9% didn't know

Workshop process

Broaden participants perceptions

Community's views of the future

Bringing together of stakeholders should not be <u>undervalued</u> and is empowering for locals to allow their voice to be heard by policy makers

Conclusion – Community benefits

- Empowering locals through accommodating local community social and cultural values
- Set the platform for effective adaptation planning
 - Interactions between locals, policy makers, and researchers
 - Uptake: Relevant information that locals find useful to sustaining their livelihoods
 - Create/trial innovative ways to increase adaptative capacity
- Build deeper linkages and conversations guide the way forward

Thanks- ESSO

Acknowledgments – thanks to workshop participants

